Problem

on

Kinetic theory of

gases

Question

An air bubble of volume $1.0 \mathrm{~cm}^{3}$ rises
from the bottom of lake 40 m deep at a temperature of $12{ }^{\circ} \mathrm{C}$. To what volume does it grow, when it reaches the surface, which is at a temperature of 35 ${ }^{\circ} \mathrm{C}$? Given that 1 atm $=1.01 \times 10^{5} \mathrm{~Pa}$.

Here, temperature is $12{ }^{\circ} \mathrm{C}$ at the bottom of lake and bubbles starts rising to the surface.

Let us understand...

Here, temperature at 40 m depth,

$$
\begin{aligned}
T_{1} & =12+273 \\
& =285 K
\end{aligned}
$$

Volume of the bubble at 40 m depth,

$$
\begin{aligned}
V_{1} & =1.0 \mathrm{~cm}^{3} \\
& =1.0 \times 10^{-6} \mathrm{~m}^{3} ;
\end{aligned}
$$

Pressure at 40 m depth,
$P_{1}=1$ atm + pressure exerted by 40 m of water column

$$
\text { = } 1 \text { atm + hpg }
$$

Here, density of water, $\rho=1000 \mathrm{~kg} \mathrm{~m}^{\mathbf{- 3}}$

$$
\begin{aligned}
& =1.01 \times 10^{5}+40 \times 10^{3} \times 9.8 \\
& =4.93 \times 10^{5} P a
\end{aligned}
$$

Now, air bubble reaches to the surface of
lake,

Temperature at the surface of lake,

$$
T_{2}=35+273=308 K
$$

Pressure at the surface of the lake,

$$
P_{2}=1.01 \times 10^{5} \mathrm{~Pa}
$$

Let V_{2} be the volume of air bubble at the surface of the lake. Then,

$$
\begin{gathered}
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
V_{2}=\frac{P_{1} V_{1}}{T_{1}} \times \frac{T_{2}}{P_{2}}
\end{gathered}
$$

$$
=\frac{4.93 \times 10^{5} \times 1.0 \times 10^{-6} \times 308}{285 \times 1.01 \times 10^{5}}
$$

$$
=5.275 \times 10^{-6} \mathrm{~m}^{3}
$$

A CIET NCERT
 PRESENTATION

